RFID Reader Module (#28140)
RFID 54 mm x 85 mm Rectangle Tag (#28141)
RFID 50 mm Round Tag (#28142)

Introduction
Designed in cooperation with Grand Idea Studio (http://www.grandideastudio.com/), the Parallax Radio Frequency Identification (RFID) Reader Module is the first low-cost solution to read passive RFID transponder tags up to 1 ¼" - 3" inches away depending on the tag (see list below). The RFID Reader Module can be used in a wide variety of hobbyist and commercial applications, including access control, automatic identification, robotics navigation, inventory tracking, payment systems, and car immobilization.

- Fully-integrated, low-cost method of reading passive RFID transponder tags
- 1-wire, 2400 baud Serial TTL interface to PC, BASIC Stamp® and other processors
- Requires single +5VDC supply
- Bi-color LED for visual indication of activity
- 0.100” pin spacing for easy prototyping and integration
The Parallax RFID Reader Module works exclusively with the EM Microelectronics-Marin SA EM4100-family of passive read-only transponder tags. A variety of different tag types and styles exist with the most popular made available from Parallax. Each transponder tag contains a unique identifier (one of 2^{40}, or 1,099,511,627,776, possible combinations) that is read by the RFID Reader Module and transmitted to the host via a simple serial interface.

Electronic Connections

The Parallax RFID Reader Module can be integrated into any design using only four connections (VCC, /ENABLE, SOUT, GND). Use the following circuit for connecting the Parallax RFID Reader Module to the BASIC Stamp microcontroller:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Pin Name</th>
<th>Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC</td>
<td>P</td>
<td>System power, +5V DC input.</td>
</tr>
<tr>
<td>2</td>
<td>/ENABLE</td>
<td>I</td>
<td>Module enable pin. Active LOW digital input. Bring this pin LOW to enable the RFID reader and activate the antenna.</td>
</tr>
<tr>
<td>3</td>
<td>SOUT</td>
<td>O</td>
<td>Serial Out. TTL-level interface, 2400bps, 8 data bits, no parity, 1 stop bit.</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>G</td>
<td>System ground. Connect to power supply’s ground (GND) terminal.</td>
</tr>
</tbody>
</table>

Note: Type: I = Input, O = Output, P = Power, G = Ground
Communication Protocol

Implementation and usage of the RFID Reader Module is straightforward. BASIC Stamp 1, 2, and SX28AC/DP code examples (SX/B) are included at the end of this documentation.

The RFID Reader Module is controlled with a single TTL-level active-low /ENABLE pin. When the /ENABLE pin is pulled LOW, the module will enter its active state and enable the antenna to interrogate for tags. The current consumption of the module will increase dramatically when the module is active.

A visual indication of the state of the RFID Reader Module is given with the on-board LED. When the module is successfully powered-up and is in an idle state, the LED will be GREEN. When the module is in an active state and the antenna is transmitting, the LED will be RED.

The face of the RFID tag should be held parallel to the front or back face of the antenna (where the majority of RF energy is focused). If the tag is held sideways (perpendicular to the antenna) you'll either get no reading or a poor reading. Only one transponder tag should be held up to the antenna at any time. The use of multiple tags at one time will cause tag collisions and confuse the reader. The two tags available in the Parallax store have a read distance of approximately 3 inches. Actual distance may vary slightly depending on the size of the transponder tag and environmental conditions of the application.

When a valid RFID transponder tag is placed within range of the activated reader, the unique ID will be transmitted as a 12-byte ASCII string via the TTL-level SOUT (Serial Output) pin in the following format:

```
MSB
<table>
<thead>
<tr>
<th>Start Byte (0x0A)</th>
<th>Unique ID Digit 1</th>
<th>Unique ID Digit 2</th>
<th>Unique ID Digit 3</th>
<th>Unique ID Digit 4</th>
<th>Unique ID Digit 5</th>
<th>Unique ID Digit 6</th>
<th>Unique ID Digit 7</th>
<th>Unique ID Digit 8</th>
<th>Unique ID Digit 9</th>
<th>Unique ID Digit 10</th>
<th>Stop Byte (0x0D)</th>
</tr>
</thead>
</table>
```

The start byte and stop byte are used to easily identify that a correct string has been received from the reader (they correspond to a line feed and carriage return characters, respectively). The middle ten bytes are the actual tag's unique ID.

All communication is 8 data bits, no parity, 1 stop bit, non-inverted, least significant bit first (8N1). The baud rate is configured for 2400bps, a standard communications speed supported by most any microprocessor or PC, and cannot be changed. The Parallax RFID Reader Module initiates all communication. The Parallax RFID Reader Module can connect directly to any TTL-compatible UART or to an RS232-compatible interface by using an external level shifter.

Absolute Maximum Ratings and Electrical Characteristics

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-55°C to +125°C</td>
</tr>
<tr>
<td>Supply Voltage (V_{CC})</td>
<td>+4.5V to +5.5V</td>
</tr>
<tr>
<td>Ground Voltage (V_{SS})</td>
<td>0V</td>
</tr>
<tr>
<td>Voltage on any pin with respect to V_{SS}</td>
<td>-0.3V to +7.0V</td>
</tr>
</tbody>
</table>

Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
DC Characteristics

At $V_{CC} = +5.0$V and $T_A = 25^\circ$C unless otherwise noted

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Specification</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_{CC}</td>
<td>---</td>
<td>Min.</td>
<td>4.5</td>
</tr>
<tr>
<td>Supply Current, Idle</td>
<td>I_{IDLE}</td>
<td>---</td>
<td>Typ.</td>
<td>10</td>
</tr>
<tr>
<td>Supply Current, Active</td>
<td>I_{CC}</td>
<td>---</td>
<td>Max.</td>
<td>90</td>
</tr>
<tr>
<td>Input LOW voltage</td>
<td>V_{IL}</td>
<td>$+4.5V <= V_{CC} <= +5.5V$</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Input HIGH voltage</td>
<td>V_{IH}</td>
<td>$+4.5V <= V_{CC} <= +5.5V$</td>
<td>Max.</td>
<td>2.0</td>
</tr>
<tr>
<td>Output LOW voltage</td>
<td>V_{OL}</td>
<td>$V_{CC} = +4.5V$</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Output HIGH voltage</td>
<td>V_{OH}</td>
<td>$V_{CC} = +4.5V$</td>
<td>Min.</td>
<td>$V_{CC} - 0.7$</td>
</tr>
</tbody>
</table>

RFID Tags Available From Parallax

Parallax provides two passive RFID tags from our on-line store. We're stocking the tags because many suppliers have high minimums, yet many of our customers may only want a few tags for their basic experimentation.

- 54 mm x 85 mm Rectangle Tag (#28141)
- 50 mm Round Tag (#28142)

Actual tag dimensions may vary. Contact Parallax for specific information.
Optional Tag Information

Even though Parallax only carries a Round Tag and a Rectangle Tag the following values were obtained from different tags available in the market.

ISO Card: 6.3cm (2.5") +/- 10%
World Tag 50mm: 6.8cm (2.7") +/- 10%
World Tag 30mm: 5.3cm (2.1") +/- 10%
Bobsleigh Keyfob: 5.3cm (2.1") +/- 10%
Tear shape: 4.0cm (1.6") +/- 10%
Wristband: 4.0cm (1.6") +/- 10%

RFID Technology Overview

Material in this section is based on information provided by the RFID Journal (www.rfidjournal.com).

Radio Frequency Identification (RFID) is a generic term for non-contacting technologies that use radio waves to automatically identify people or objects. There are several methods of identification, but the most common is to store a unique serial number that identifies a person or object on a microchip that is attached to an antenna. The combined antenna and microchip are called an "RFID transponder" or "RFID tag" and work in combination with an "RFID reader" (sometimes called an "RFID interrogator").

An RFID system consists of a reader and one or more tags. The reader's antenna is used to transmit radio frequency (RF) energy. Depending on the tag type, the energy is "harvested" by the tag's antenna and used to power up the internal circuitry of the tag. The tag will then modulate the electromagnetic waves generated by the reader in order to transmit its data back to the reader. The reader receives the modulated waves and converts them into digital data. In the case of the Parallax RFID Reader Module, correctly received digital data is sent serially through the SOUT pin.

There are two major types of tag technologies. "Passive tags" are tags that do not contain their own power source or transmitter. When radio waves from the reader reach the chip's antenna, the energy is converted by the antenna into electricity that can power up the microchip in the tag (known as "parasitic power"). The tag is then able to send back any information stored on the tag by reflecting the electromagnetic waves as described above. "Active tags" have their own power source and transmitter. The power source, usually a battery, is used to run the microchip's circuitry and to broadcast a signal to a reader. Due to the fact that passive tags do not have their own transmitter and must reflect their signal to the reader, the reading distance is much shorter than with active tags. However, active tags are typically larger, more expensive, and require occasional service. The RFID Reader Module is designed specifically for low-frequency (170 kHz) passive tags.

Frequency refers to the size of the radio waves used to communicate between the RFID system components. Just as you tune your radio to different frequencies in order to hear different radio stations, RFID tags and readers have to be tuned to the same frequency in order to communicate effectively. RFID systems typically use one of the following frequency ranges: low frequency (or LF, around 170 kHz), high frequency (or HF, around 13.56 MHz), ultra-high frequency (or UHF, around 868 and 928 MHz), or microwave (around 2.45 and 5.8 GHz). It is generally safe to assume that a higher frequency equates to a faster data transfer rate and longer read ranges, but also more sensitivity to environmental factors such as liquid and metal that can interfere with radio waves.

There really is no such thing as a "typical" RFID tag. The read range of a tag ultimately depends on many factors: the frequency of RFID system operation, the power of the reader, and interference from other RF devices. Balancing a number of engineering trade-offs (antenna size v. reading distance v. power v.
manufacturing cost), the Parallax RFID Reader Module's antenna was designed with a specific inductance and "Q" factor for 170kHz RFID operation at a tag read distance of up to 1 ¾" - 3" inches.

Example Code

The following code examples read tags from a RFID Reader Module and compare the values to known tags (stored in an EEPROM table).

```pascal
' ==================================================================
' File....... RFID.BS1
' Purpose.... RFID Tag Reader / Simple Security System
' Author..... (c) Parallax, Inc. -- All Rights Reserved
' E-mail..... support@parallax.com
' Started....
' Updated.... 07 FEB 2005
' {$STAMP BS1}
' {$PBASIC 1.0}
'
' ==================================================================

' -----[ Program Description ]---------------------------------------------
' Reads tags from a Parallax RFID reader and compares to known tags (stored in EEPROM table). If tag is found, the program will disable a lock.

' -----[ Revision History ]------------------------------------------------

' -----[ I/O Definitions ]-------------------------------------------------
SYMBOL  Enable          = 0                     ' low = reader on
SYMBOL  RX              = 1                     ' serial from reader
SYMBOL  Spkr            = 2                     ' speaker output
SYMBOL  Latch           = 3                     ' lock/latch control

' -----[ Constants ]-------------------------------------------------------
SYMBOL  LastTag         = 2                     ' 3 tags; 0 to 2

' -----[ Variables ]-------------------------------------------------------
SYMBOL  tag0            = B0                    ' RFID bytes buffer
SYMBOL  tag1            = B1
SYMBOL  tag2            = B2
SYMBOL  tag3            = B3
SYMBOL  tag4            = B4
SYMBOL  tag5            = B5
SYMBOL  tag6            = B6
SYMBOL  tag7            = B7
SYMBOL  tag8            = B8
SYMBOL  tag9            = B9
SYMBOL  tagNum          = B10                   ' from EEPROM table
SYMBOL  pntr            = B11                   ' pointer to char in table
SYMBOL  char            = B12                   ' character from table
```

Parallax, Inc. • RFID Reader Module (#28140) • Updated 09/2005 v1.1
' -----[EEPROM Data]---

Tags:
EEPROM ("0F0184F20B") ' valid tags
EEPROM ("0F01D9D263")
EEPROM ("04129C1B43")
EEPROM ("0000000000") ' space for other tags
EEPROM ("0000000000")

' -----[Initialization]--

Reset:
HIGH Enable ' turn off RFID reader
LOW Latch ' lock the door!

' -----[Program Code]--

Main:
LOW Enable ' activate the reader
SERIN RX, T2400, ($0A) ' wait for header
SERIN RX, T2400, tag0, tag1, tag2, tag3, tag4 ' get tag bytes
SERIN RX, T2400, tag5, tag6, tag7, tag8, tag9
HIGH Enable ' deactivate reader

Check_List:
FOR tagNum = 0 TO LastTag ' scan through known tags
pntr = tagNum * 10 + 0 : READ pntr, char ' read char from DB
IF char <> tag0 THEN Bad_Char
pntr = tagNum * 10 + 1 : READ pntr, char
IF char <> tag1 THEN Bad_Char
pntr = tagNum * 10 + 2 : READ pntr, char
IF char <> tag2 THEN Bad_Char
pntr = tagNum * 10 + 3 : READ pntr, char
IF char <> tag3 THEN Bad_Char
pntr = tagNum * 10 + 4 : READ pntr, char
IF char <> tag4 THEN Bad_Char
pntr = tagNum * 10 + 5 : READ pntr, char
IF char <> tag5 THEN Bad_Char
pntr = tagNum * 10 + 6 : READ pntr, char
IF char <> tag6 THEN Bad_Char
pntr = tagNum * 10 + 7 : READ pntr, char
IF char <> tag7 THEN Bad_Char
pntr = tagNum * 10 + 8 : READ pntr, char
IF char <> tag8 THEN Bad_Char
pntr = tagNum * 10 + 9 : READ pntr, char
IF char <> tag9 THEN Bad_Char
GOTO Tag_Found ' all match -- good tag

Bad_Char:
NEXT

Bad_Tag:
SOUND Spkr, (25, 80) ' groan
PAUSE 1000
GOTO Main

Tag_Found:
DEBUG #tagNum, CR ' for testing
HIGH Latch ' remove latch
SOUND Spkr, (114, 165) ' beep
LOW Latch ' restore latch
Parallax, Inc. • RFID Reader Module (#28140) • Updated 09/2005 v1.1

GOTO Main
END

===

File....... RFID.BS2
Purpose..... RFID Tag Reader / Simple Security System
Author...... (c) Parallax, Inc. -- All Rights Reserved
E-mail...... support@parallax.com
Started....
Updated.... 07 FEB 2005

{${STAMP BS2}
{${PBASIC 2.5}

===

' -----[Program Description]---
' Reads tags from a Parallax RFID reader and compares to known tags (stored
' in EEPROM table). If tag is found, the program will disable a lock.

' -----[Revision History]---

' -----[I/O Definitions]---
Enable PIN 0 ' low = reader on
RX PIN 1 ' serial from reader
Spkr PIN 2 ' speaker output
Latch PIN 3 ' lock/latch control

' -----[Constants]---

#SELECT $STAMP
#CASE BS2, BS2E, BS2PE
 T1200 CON 813
 T2400 CON 396
 T4800 CON 188
 T9600 CON 84
 T19K2 CON 32
 TMidi CON 12
 T38K4 CON 6
#CASE BS2SX, BS2P
 T1200 CON 2063
 T2400 CON 1021
 T4800 CON 500
 T9600 CON 240
 T19K2 CON 110
 TMidi CON 60
 T38K4 CON 45
#CASE BS2PX
 T1200 CON 3313
 T2400 CON 1646
 T4800 CON 813
 T9600 CON 396
 T19K2 CON 188
 TMidi CON 108
 T38K4 CON 84

#ENDSELECT
SevenBit CON $2000
Inverted CON $4000
Open CON $8000
Baud CON T2400

#SELECT $STAMP
#CASE BS2, BS2E
 TmAdj CON $100 ' x 1.0 (time adjust)
 FrAdj CON $100 ' x 1.0 (freq adjust)
#CASE BS2SX
 TmAdj CON $280 ' x 2.5
 FrAdj CON $066 ' x 0.4
#CASE BS2P
 TmAdj CON $3C5 ' x 3.77
 FrAdj CON $044 ' x 0.265
#CASE BS2Pp
 TmAdj CON $100 ' x 1.0
 FrAdj CON $0AA ' x 0.665
#CASE BS2Px
 TmAdj CON $607 ' x 6.03
 FrAdj CON $2A ' x 0.166
#ENDSELECT

LastTag CON 3

#DEFINE __No_SPRAM = ($STAMP < BS2P) ' does module have SPRAM?

' -----[Variables]---

#IF __No_SPRAM #THEN
 buf VAR Byte(10) ' RFID bytes buffer
#ELSE
 chkChar VAR Byte ' character to test
#ENDIF

tagNum VAR Nib ' from EEPROM table
idx VAR Byte ' tag byte index
char VAR Byte ' character from table

' -----[EEPROM Data]---

Tag1 DATA "0F0184F20B" ' valid tags
Tag2 DATA "0F01D9D263"
Tag3 DATA "04129C1B43"

Name0 DATA "Unauthorized", CR, 0
Name1 DATA "George Johnston", CR, 0
Name2 DATA "Dick Miller", CR, 0
Name3 DATA "Mary Evans", CR, 0

' -----[Initialization]---

Reset:
 HIGH Enable ' turn off RFID reader
 LOW Latch ' lock the door!
' -----[Program Code]--

Main:
LOW Enable ' activate the reader
#IF __No_SPRAM #THEN
 SERIN RX, T2400, [WAIT($0A), STR buf\10] ' wait for hdr + ID
#ELSE
 SERIN RX, T2400, [WAIT($0A), SPSTR 10]
#ENDIF
HIGH Enable ' deactivate reader

Check_List:
FOR tagNum = 1 TO LastTag ' scan through known tags
 FOR idx = 0 TO 9 ' scan bytes in tag
 READ (tagNum - 1 * 10 + idx), char ' get tag data from table
 #IF __No_SPRAM #THEN
 IF (char <> buf(idx)) THEN Bad_Char ' compare tag to table
 #ELSE
 GET idx, chkChar ' read char from SPRAM
 IF (char <> chkChar) THEN Bad_Char ' compare to table
 #ENDIF
 NEXT
 GOTO Tag_Found ' all bytes match!

Bad_Char: ' try next tag
 NEXT

Bad_Tag:
 tagNum = 0
 GOSUB Show_Name ' print message
 FREQOUT Spkr, 1000 */ TmAdj, 115 */ FrAdj ' groan
 PAUSE 1000
 GOTO Main

Tag_Found:
 GOSUB Show_Name ' print name
 HIGH Latch ' remove latch
 FREQOUT Spkr, 2000 */ TmAdj, 880 */ FrAdj ' beep
 LOW Latch ' restore latch
 GOTO Main

END

' -----[Subroutines]--

' Prints name associated with RFID tag
Show_Name:
DEBUG DEC tagNum, ": "
LOOKUP tagNum,
 [Name0, Name1, Name2, Name3], idx ' point to first character
DO
 READ idx, char ' read character from name
 IF (char = 0) THEN EXIT ' if 0, we're done
 DEBUG char
 idx = idx + 1 ' point to next character
LOOP
RETURN